(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model

Dominik Stöckinger

TU Dresden

KIAS Workshop, October 2016

based on work with: [Philip Diessner, Jan Kalinowski, Wojciech Kotlarski, and Sebastian Liebschner '14, '15, '16]

Dominik Stöckinger

1/26

Outline

1 Motivation: SUSY and non-minimal SUSY

- 2 R-symmetric SUSY as a concrete example
- Biggs, W, dark matter vs. LHC data in MRSSM

4 Summary

- Fundamental new symmetry, unique extension of Poincaré
- Relation to gravity, string theory

- Fundamental new symmetry, unique extension of Poincaré
- Relation to gravity, string theory
- Fine tuning problem/stabilization of EW scale
- Unification of gauge couplings
- Dynamic generation of mexican hat potential
- Dark matter

- Fundamental new symmetry, unique extension of Poincaré
- Relation to gravity, string theory
- Fine tuning problem/stabilization of EW scale
- Unification of gauge couplings
- Dynamic generation of mexican hat potential
- Dark matter
- Minimality was never an argument! These motivations hold equally well in minimal and non-minimal SUSY!

- Fundamental new symmetry, unique extension of Poincaré
- Relation to gravity, string theory
- Fine tuning problem/stabilization of EW scale
- Unification of gauge couplings
- Dynamic generation of mexican hat potential
- Dark matter
- some non-minimal models even better motivated than MSSM (improve μ-problem, flavor problem, allow lighter/heavier sparticles)

Tools for non-minimal SUSY (advertisement/warning)					
Mode		Spectrum generator			
MSSN	N	Softsusy, Spheno, Isasusy, SuseFlav, Suspect			
NMS	SM	NMSpec, Softsusy			
any S	SUSY model	Sarah [F. Staub], FlexibleSUSY [Athron, JH Park, DS, Voigt]			
ß	Mf. Σc	SARAH	SPheno code (Fortran)		
م ۱) (۱	(Mathematica)	FlexibleSUSY	Spectrum generator (C++)		

FlexibleSUSY properties:

- simple def. of model (\rightarrow Sarah)/boundary condition
- c++ code modular, readable, can be reused, customized, extended!

"hacking vs. programming" (Jae-hyeon Park)

Later calculations based on both codes + selected by-hand one-loop/two-loop calculations \rightsquigarrow cross-checks very important!

Outline

1 Motivation: SUSY and non-minimal SUSY

2 R-symmetric SUSY as a concrete example

3 Higgs, W, dark matter vs. LHC data in MRSSM

4 Summary

• Continuous, conserved R-charge. R-charges fixed by SUSY-algebra

(in superfields: $\theta \rightarrow e^{i\alpha}\theta$)

- some MSSM-processes forbidden
- surviving ones have stronger m_{gluino}-suppression

R-symmetric model MRSSM [Kribs, Poppitz, Weiner]

• gluino (and other gauginos/Higgsinos) = Dirac-fermion

- ▶ gluon: 2 d.o.f.
- gluino: 4 d.o.f.
- new scalar sgluon: 2 d.o.f

 $(SU(3) \times SU(2) \times U(1)$ requires new chiral superfields (adjoint) \hat{O} , \hat{T} , \hat{S})

Same for all gauginos \Rightarrow new scalars

- colour octet scalars (sgluons)
- SU(2) triplet scalar (Higgs Triplet!)
- Higgs singlet

Technical summary of MRSSM

New symmetry, $heta
ightarrow e^{ilpha} heta$

• \tilde{q}_L : R=+1, \tilde{q}_R : R=-1, no LR-mixing!

Dirac gauginos, new superfields \hat{O} , \hat{T} , \hat{S}

- Dirac gluinos
- new scalars: sgluons, Higgs triplet, Higgs singlet

Dirac Higgsinos, new superfields \hat{R}_u , \hat{R}_d

- New superpotential terms $W_{\text{MRSSM}} = \ldots + \mu_u \hat{H}_u \hat{R}_u + \Lambda_u \hat{H}_u \hat{T} \hat{R}_u + \lambda_u \hat{H}_u \hat{S} \hat{R}_u + y_u \hat{Q} \hat{H}_u \hat{U}$
- \Rightarrow Mass eigenstates: 4 Dirac neutralinos, 4 Dirac charginos

Interesting properties of MRSSM, sample scenarios

- R-charges forbid some processes
- Dirac gauginos, and Dirac Higgsinos
- new: sgluon, Higgs triplet/singlet
- solves SUSY flavor problem

Outline

1 Motivation: SUSY and non-minimal SUSY

2 R-symmetric SUSY as a concrete example

3 Higgs, W, dark matter vs. LHC data in MRSSM

4 Summary

∃ → ∢

Outline

3 Higgs, W, dark matter vs. LHC data in MRSSM • $M_h^{\text{Exp}} = 125.09 \pm 0.24 \text{ GeV}, M_W^{\text{Exp}} = 80.385 \pm 15 \text{ GeV}$

- $\Omega h^2 = 0.1199 \pm 0.0027$, no dark matter direct detection
- LHC searches have not found new particles

Question 1: MRSSM compatible with Higgs, W mass measurements? [Diessner, Kalinowski, Kotlarski, DS '14, '15]

Bad/difficulty for M_h : more scalars S, T^0 mix, reduced tree-level mass

Question 1: MRSSM compatible with Higgs, W mass measurements? [Diessner, Kalinowski, Kotlarski, DS '14, '15]

Bad/difficulty for M_h : more scalars S, T^0 mix, reduced tree-level mass

$$\mathcal{M}_{\text{phi};2,3}^{\text{limit}} = \begin{pmatrix} m_Z^2 & v_u(\sqrt{2}\lambda_u\mu_u^{\text{eff-}} + g_1m_D^B) \\ v_u(\sqrt{2}\lambda_u\mu_u^{\text{eff-}} + g_1m_D^B) & 4(m_D^B)^2 + m_S^2 + \frac{\lambda_u^2\nu_u^2}{2} \end{pmatrix}$$
(for $v_{S,T} \ll v, m_D^2 \ll m_{\text{soft}}^2$.

 off-diag. elements=Higgsino/gaugino masses shouldn't be too large, loop corrections very important

Good for M_h : large loop contributions to M_h from "Yukawa couplings"

Good for M_h : large loop contributions to M_h from "Yukawa couplings" • Top Yukawa: $y_u \hat{Q} \hat{H}_u \hat{U}$:

$$(\Delta m_h)^2 \propto y_u^4 \log rac{m_{ ilde{t}}^2}{m_t^2}$$

• New Yukawa: $\Lambda_u \hat{H}_u \hat{T} \hat{R}_u$:

$$(\Delta m_h)^2 \propto rac{4\lambda^4 + 4\lambda^2\Lambda^2 + 5\Lambda^4}{4}\lograc{m_{
m scalar}^2}{m_D^2}$$

(additional positive two-loop contributions from sgluons!)

Good for M_h : large loop contributions to M_h from "Yukawa couplings" • Top Yukawa: $y_u \hat{Q} \hat{H}_u \hat{U}$:

$$(\Delta m_h)^2 \propto y_u^4 \log rac{m_{ ilde{t}}^2}{m_t^2}$$

• New Yukawa: $\Lambda_u \hat{H}_u \hat{T} \hat{R}_u$:

$$(\Delta m_h)^2 \propto rac{4\lambda^4 + 4\lambda^2\Lambda^2 + 5\Lambda^4}{4}\lograc{m^2_{
m scalar}}{m^2_D}$$

(additional positive two-loop contributions from sgluons!)

• motivates large "Yukawa coupling" Λ_u and mass splitting $m_D \ll m_{
m scalar}$

Additionally: positive two-loop corrections from sgluons

However, danger for M_W :

- Yukawas shouldn't be too large!
- Higgs Triplet VEV must be small!

글 🕨 🔺 글

Additionally: positive two-loop corrections from sgluons

However, danger for M_W :

- Yukawas shouldn't be too large!
- Higgs Triplet VEV must be small!

Answer 1: There is viable parameter space! [Diessner, Kalinowski, Kotlarski, DS '14, '15]

Interesting properties of MRSSM, sample scenarios

- R-charges forbid some processes
- Dirac gauginos, and Dirac Higgsinos
- new: sgluon, Higgs triplet/singlet
- solves SUSY flavor problem
- *M_h*: motivates rather light charginos
- ... and large "Yukawa coupling" Λ_u

Question 2: light singlet possible/helpful?

- Should be an advantage:
- No tree-level reduction for SM-like Higgs
- relevant H_u -S mass matrix shows the requirements:

$$\mathcal{M}_{\mathsf{phi};2,3}^{\mathsf{limit}} = \begin{pmatrix} m_Z^2 & v_u(\sqrt{2}\lambda_u\mu_u^{\mathsf{eff-}} + g_1m_D^B) \\ v_u(\sqrt{2}\lambda_u\mu_u^{\mathsf{eff-}} + g_1m_D^B) & 4(m_D^B)^2 + m_S^2 + \frac{\lambda_u^2v_u^2}{2} \end{pmatrix}$$

• small m_D^B , m_S , $\lambda_u v_u \rightarrow$ is this viable?

Question 2: light singlet possible/helpful?

- Should be an advantage:
- No tree-level reduction for SM-like Higgs
- relevant H_u -S mass matrix shows the requirements:

$$\mathcal{M}_{\text{phi};2,3}^{\text{limit}} = \begin{pmatrix} m_Z^2 & v_u(\sqrt{2}\lambda_u\mu_u^{\text{eff-}} + g_1m_D^B) \\ v_u(\sqrt{2}\lambda_u\mu_u^{\text{eff-}} + g_1m_D^B) & 4(m_D^B)^2 + m_S^2 + \frac{\lambda_u^2v_u^2}{2} \end{pmatrix}$$

• small
$$m^{B}_{D}$$
, $m_{\mathcal{S}}$, $\lambda_{u}v_{u}
ightarrow$ is this viable?

Answer 2: Yes! Light bino Dirac mass possible!

[Diessner,Kalinowski,Kotlarski,DS '15]

Now study dark matter and LHC data!

allowed region for $\lambda_u = 0$: (used HiggsBounds/HiggsSignals)

Interesting properties of MRSSM, sample scenarios

- R-charges forbid some processes
- Dirac gauginos, and Dirac Higgsinos
- new: sgluon, Higgs triplet/singlet
- solves SUSY flavor problem
- *M_h*: motivates rather light charginos
- ... and large "Yukawa coupling" Λ_u
- light singlet possible \rightarrow small m_D^B , m_S

Outline

3 Higgs, W, dark matter vs. LHC data in MRSSM

- $M_h^{\text{Exp}} = 125.09 \pm 0.24 \text{ GeV}, \ M_W^{\text{Exp}} = 80.385 \pm 15 \text{ GeV}$
- $\Omega \dot{h}^2 = 0.1199 \pm 0.0027$, no dark matter direct detection
- LHC searches have not found new particles

Question 3: dark matter explained in MRSSM with(out) light singlet?

Relic density $(f = \tau)$:

- LSP = Dirac Bino
- *m*_{LSP} < 60...300GeV
- ullet annihilates into au
- light stau mass fixed, $m_{ au} m_{
 m LSP} < 100 {
 m GeV}$

Direct detection limits (f = q):

- Interference between terms $\propto rac{1}{\mu_u^2}, \ rac{1}{m_{\tilde{q}}^2}$
- $\mu_u \approx 400...700 \text{GeV}$ preferred to evade limits

Question 3: dark matter explained in MRSSM with(out) light singlet?

Relic density $(f = \tau)$:

- LSP = Dirac Bino
- *m*_{LSP} < 60...300GeV
- ullet annihilates into au
- light stau mass fixed, $m_{ au} m_{
 m LSP} < 100 {
 m GeV}$

Direct detection limits (f = q):

- Interference between terms $\propto rac{1}{\mu_u^2}, \ rac{1}{m_{\tilde{q}}^2}$
- $\mu_u \approx 400 \dots 700 \text{GeV}$ preferred to evade limits

Interesting properties of MRSSM, sample scenarios

- R-charges forbid some processes
- Dirac gauginos, and Dirac Higgsinos
- new: sgluon, Higgs triplet/singlet
- solves SUSY flavor problem
- *M_h*: motivates rather light charginos
- ... and large "Yukawa coupling" Λ_u
- light singlet possible \rightarrow small m_D^B , m_S
- dark matter: LSP=Dirac Bino, light stau; ~ 500GeV Higgsino μ_u preferred

Outline

- Higgs, W, dark matter vs. LHC data in MRSSM
 *M*_h^{Exp} = 125.09 ± 0.24 GeV, *M*_W^{Exp} = 80.385 ± 15 GeV
 - $\Omega h^2 = 0.1199 \pm 0.0027$, no dark matter direct detection
 - LHC searches have not found new particles

Question 4: Allowed by EW LHC searches?

Recast LHC limits for MSSM to MRSSM: Assume very light singlet and LSP \sim 50 GeV; light stau \sim 100 GeV; discuss limits on one degenerate neutralino/chargino $\chi^{0,\pm}$

MSSM:

- $\chi^{0,\pm} =$ wino-like
- decays to Higgs/Z/W/stau
- searches not effective

Dominik Stöckinger

- MRSSM (more dangerous!):
 - $\chi^{0,\pm} = \text{down-higgsino-like}$
 - decay to stau if possible
 - searches effective, but scenario alive, e.g. for $m_{\gamma,0,\pm} > 350 \text{GeV}$

Higgs, W, dark matter vs. LHC data in MRSSM 21/26

Question 4: Allowed by EW LHC searches? Answer 3/4: Dark matter can be explained in this scenario! Recast LHC limits for MSSM to MRSSM: Assume very light singlet and LSP \sim 50 GeV; light stau \sim 100 GeV; discuss limits on one degenerate neutralino/chargino $\chi^{0,\pm}$

MSSM:

- $\chi^{0,\pm} =$ wino-like
- ${\ensuremath{\, \circ }}$ decays to Higgs/Z/W/stau
- searches not effective

Dominik Stöckinger

- MRSSM (more dangerous!):
 - $\chi^{0,\pm} = \text{down-higgsino-like}$
 - decay to stau if possible
 - searches effective, but scenario alive, e.g. for $m_{\gamma,0,\pm} > 350 \text{GeV}$

Higgs, W, dark matter vs. LHC data in MRSSM 21/26

Question 5: How about LHC searches for colored sparticles? [DKKS+Liebschner] Hope: total cross section reduced, lighter masses possible!

- simple study without MRSSM NLO corrections: [Kribs, Martin '12]
 "squarks in MRSSM can be a few 100 GeV lighter than in the MSSM"
- preliminary result for NLO corrections [Diessner, Kalinowski, Kotlarski, Liebschner, DS]:
 K-factor in MRSSM is higher

than in MSSM! Depends e.g. on sgluon mass

Question 5: How about LHC searches for colored sparticles? [DKKS+Liebschner] Lighter squarks possible! Hope: total cross section reduced, lighter masses possible!

- simple study without MRSSM NLO corrections: [Kribs, Martin '12]
 "squarks in MRSSM can be a few 100 GeV lighter than in the MSSM"
- preliminary result for NLO corrections [Diessner, Kalinowski, Kotlarski, Liebschner, DS]:
 K-factor in MRSSM is higher

than in MSSM! Depends e.g. on sgluon mass

outlook: compare to LHC data!

Interesting properties of MRSSM, sample scenarios

- R-charges forbid some processes
- Dirac gauginos, and Dirac Higgsinos
- new: sgluon, Higgs triplet/singlet
- solves SUSY flavor problem
- *M_h*: motivates rather light charginos
- ... and large "Yukawa coupling" Λ_u
- light singlet possible \rightarrow small m_D^B , m_S
- dark matter: LSP=Dirac Bino, light stau; ~ 500GeV Higgsino μ_u preferred
- LHC EW searches: ok
- LHC squark searches: to do precisely

Interesting properties of MRSSM, sample scenarios

- R-charges forbid some processes
- Dirac gauginos, and Dirac Higgsinos
- new: sgluon, Higgs triplet/singlet
- solves SUSY flavor problem
- *M_h*: motivates rather light charginos
- ... and large "Yukawa coupling" Λ_u
- light singlet possible \rightarrow small m_D^B , m_S
- dark matter: LSP=Dirac Bino, light stau; ~ 500GeV Higgsino μ_u preferred
- LHC EW searches: ok
- LHC squark searches: to do precisely

	BMP4	BMP5	BMP6
$\tan \beta$	40	20	6
B_{μ}	200 ²	200 ²	500 ²
λ_d , λ_u	0.01, -0.01	0.0, -0.01	0.0, 0.0
Λ_d , Λ_u	-1, -1.2	-1, -1.15	-1, -1.2
M ^D _B	50	44	30
m_S^2	30 ²	40 ²	80 ²
$m_{R_u}^2$, $m_{R_d}^2$		$1000^2, 700^2$	
μ _d , μ _u	130,650	400, 550	550, 550
M_W^D	600	500	400
MO		1500	
m_T^2 , m_O^2		$3000^2, 1000^2$	
$m^2_{Q,1,2}, m^2_{Q,3}$	$1500^2, 700^2$	$1300^2,700^2$	$1400^2,700^2$
$m_{D,1,2}^2, m_{D,3}^2$	$1500^2, 1000^2$	$1300^2, 1000^2$	$1400^2, 1000^2$
$m_{U:1,2}^2, m_{U:3}^2$	$1500^2, 700^2$	$1300^2,700^2$	$1400^2,700^2$
$m_{I-1,2}^2, m_{F-1,2}^2$	800 ² , 800 ²	1000^2 , 1000^2	500 ² , 350 ²
m ² _{L;3,3} , m ² _{E;3,3}	800 ² , 136 ²	1000^2 , 1000^2	500 ² , 95 ²
m _{Hd}	1217 ²	211 ²	1042 ²
m_{H_u}	$-(767^2)$	$-(207^2)$	$-(201)^2$
VS	-64.9	-42.5	-56.1
VT	-1.08	-1.2	-1.1

Outline

1 Motivation: SUSY and non-minimal SUSY

2 R-symmetric SUSY as a concrete example

3 Higgs, W, dark matter vs. LHC data in MRSSM

Image: Image:

Summary and Outlook

- Non-minimal SUSY well motivated
 - general + model-specific motivations
 - model-specific LHC signals/limits
- Example R-symmetry: distinct, motivated model
 - M_W , m_h , dark matter can be explained
 - very light spectrum possible (B̃, S, τ̃, χ^{0,±}) (Heavy singlet scenario: LSP ~ 250GeV)
 - Dirac fermions, new scalars
 - beautiful, more symmetry
- Other "non-minimal" SUSY models also of interest
 - ▶ e.g. E₆SSM unifies quarks–leptons–Higgs
 - predicts observable leptoquark(ino)s
 - e.g. MSSM for $\tan\beta \to \infty$
 - $\star~(g-2)_{\mu}$ explained for $\mathit{M}_{\mathsf{LSP}}\sim1000\mathsf{GeV!}$

26/26